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Abstract. We consider the normal state of a dense ultracold atomic Fermi gas in the presence of a Feshbach
resonance. We study the BCS and the molecular instabilities and their interplay, within the framework of
a recent many-body approach. We find surprisingly that, in the temperature domain where the BCS phase
is present, there is a non zero lower bound for the binding energy of molecules at rest. This could give an
experimental mean to show the existence of the BCS phase without observing it directly.

PACS. 03.75.Ss Degenerate Fermi gases – 05.30.Fk Fermion systems and electron gas – 67.90.+z Other
topics in quantum fluids and solids; liquid and solid helium

Experimental progress in the study of ultracold Fermi
gases has proceeded quite recently at a very fast pace.
Working in the vicinity of a Feshbach resonance which al-
lows to cover a very wide range of scattering length by
sweeping the magnetic field across the resonance, several
groups dealing either with 40K [1,2] or 6Li [3–5] have been
able to vary the interatomic interaction in such a way
that the system goes essentially from a weakly attractive
atomic Fermi gas to a dilute gas of diatomic molecules.
The clear observation of long lived molecules is one of the
very positive outcomes of these experiments. More gen-
erally these experiments have shown that it is easy to
modify the scattering length a, and consequently inter-
actions, by shifting the magnetic field rapidly enough so
that the system does not have time at all to adjust to this
change. Hence it is experimentally feasible to prepare the
gas in an out-of-equilibrium situation, then to study its
evolution from a metastable state and in particular the
manifestation of various instabilities.

In this paper we study, throughout the a−T phase di-
agram, the two instabilities which arise in a normal Fermi
gas due to an attractive interaction, namely the molec-
ular and the BCS instabilities. We find an unexpected
interplay between these two instabilities. In particular, at
temperatures where the BCS phase is present, there is a
nonzero threshold for the binding energy of molecules at
rest. In other words it should not be possible to observe a
molecule with zero binding energy, in contrast to the stan-
dard situation for two atoms in vacuum where this binding
energy is zero right at the resonance a−1 = 0. Hence quite
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unexpectedly this link between BCS and molecular prop-
erties would provide a signature of the presence of the
BCS phase just by looking at the molecular spectroscopic
properties, which could be easier to observe experimen-
tally than the BCS phase itself.

Actually we have quite recently considered the effect
of the Fermi sea on the molecular bound state associated
with a Feshbach resonance, when this is the only insta-
bility. We note that, since the Fermi sea is responsible
for the formation of Cooper pairs, which are some kind
of molecules, it is somewhat natural that it does also af-
fect the molecular properties. We have shown that the
presence of the Fermi sea shifts the location of the ap-
pearance of the molecular state toward positive values for
the scattering length [6]. Instead of appearing right at the
Feshbach resonance as in vacuum, the molecule appears
for an inverse scattering length a−1 larger than a posi-
tive threshold. Physically this happens because, due to
the Fermi sea and Pauli exclusion, the occupation of a
number of plane wave states making up the wavefunc-
tion of the (large) molecule is prohibited. So building the
molecular state is more difficult than in vacuum. Natu-
rally this exclusion effect decreases as T increases since
the statistical occupation of states gets lower. The above
picture is for molecules with zero momentum for the center
of mass. When the molecule has a nonzero total momen-
tum, the adverse effect of the Fermi sea is smaller and for
fast molecules there is essentially no effect of the Fermi
sea on the molecular bound state formation. This shift of
the threshold for appearance of the molecular states is in
qualitative agreement with experimental observations of
strong losses in 6Li appearing much below the location
of the Feshbach resonance [7–9]. However the interpreta-
tion of these experiments is obviously complex, with in
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particular dynamical effects, and it remains to be seen
how strong is experimentally the role of the effect that we
have just described.

Here we will use, as in the above study, the result ob-
tained recently [10] for the scattering amplitude due to a
Feshbach resonance, modified by the presence of the dense
Fermi gas. Although obtained within a quite general for-
malism, this result makes use of strong simplifications.
Nevertheless it is clearly worth exploring simple physical
approximations before going to more elaborate schemes.
First the irreducible vertex is taken merely as the sim-
ple scattering amplitude of two isolated atoms. Second
only Pauli exclusion is taken into account for the effect of
the Fermi gas. Nevertheless the resulting scattering am-
plitude is quite non trivial. In particular, in contrast with
the vacuum case, it depends on the total momentum of
the scattering atoms because of Pauli exclusion. Here we
will concentrate on the case where the total momentum is
zero since it displays the strongest manifestation of Pauli
exclusion. Also any background scattering is omitted for
simplicity.

The expression [10] for the full vertex Γ (ω) in the
particle-particle channel, which, except for a factor π/2k0,
is just the inverse f−1 of the effective scattering ampli-
tude, is given by (we take � = 1):
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The (positive) chemical potential µ ≡ k2
0/2m is our en-

ergy scale and k0 our wavevector scale. We have intro-
duced the reduced wavevector x = k/k0, reduced energy
ω̄ = ω/µ and reduced temperature t̄ = T/µ. In contrast
with reference [10], the origin for the energy ω of the two
atoms is taken as usual at the bottom of the continuous en-
ergy spectrum for free particles. The coupling constant λ
is related to a by λ = −2k0a/π. The reduced width of
the Feshbach resonance W̄ = m2|w|2/π2k0 is related [10]
to the matrix element w corresponding to the Feshbach
coupling between the open and the closed channel. In the
strongly explored case of 6Li, W̄ is quite large and in equa-
tion (1) we will neglect ω̄/W̄ in the following.

As it is well-known the appearance of the molecular
bound state will show up as a pole in the vertex, and
therefore it will be found by writing that the r.h.s. of
equation (1) is zero. We note that the BCS instability
itself appears also as such a pole. The imaginary part of
equation (1) is zero at the chemical potential ω = 2µ and
writing that the real part is zero leads to:
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which is just the standard BCS equation with our nota-
tions (notice that −1/λ is changed into −1/λ+2/W̄ if we
take the W̄ term into account).

Fig. 1. Critical temperature Tc of the BCS transition as a
function of the inverse scattering length a−1. Threshold a−1

m (T )
for formation of zero momentum molecules (curve labelled m)
as a function of a−1, for negative chemical potential. Threshold
a−1

m1(T ) (curve labelled m1) for the appearance of a molecular
instability (at zero momentum) for positive chemical potential.
Threshold a−1

m2(T ) (curve labelled m2) for the appearance of
a single molecular instability (at zero momentum) for positive
chemical potential (see text).

It is easily seen from equation (2) that the BCS tran-
sition is also found in the region a > 0, that is beyond the
location of the Feshbach resonance in vacuum. This situ-
ation has already been considered by Milstein et al. [11]
and by Ohashi and Griffin [12] within a phenomenological
fermion-boson model, and it is actually a clear ingredient
of the BCS-BEC crossover. It seems at first surprising to
see BCS pairing for a > 0 since in this case one has an
effective repulsion between atoms. But one has rather to
consider that the tendency to form a bound state is an in-
creasing function of a−1 (taken algebraically), so that go-
ing to a > 0 makes it even easier to form BCS pairs. On the
other hand BCS pairing occurs in the Fermi sea: the BCS
pole appears for a positive energy ω = 2µ > 0. Hence the
BCS transition stops when µ = 0. Leggett [13] has already
pointed out that, for the excitation spectrum at T = 0,
there is a qualitative change when one crosses µ = 0. In
our approximation, the chemical potential is merely re-
lated to the one-species atom number n by the free par-
ticle relation n = (1/2π2)

∫
dkk2[e(k2/2m−µ)/T + 1]−1. In-

stead of n, we introduce kF defined by n = k3
F /6π2 and

EF = k2
F /2m. From equation (2) we find the critical tem-

perature Tc as a function of the scattering length a. In Fig-
ure 1 we plot Tc/EF as a function of 1/kF a. The end point
(T0, a0) is found at T0/EF � 0.99 and 1/kF a0 � 0.68.

When a−1 is increased beyond this point we expect to
find a molecular instability. Naturally this is what hap-
pens but there is a qualitative change. Indeed molecular
states correspond to negative values of the energy ω, for
which the r.h.s. of equation (1) is always real so we are
no longer forced to require that its imaginary part is zero.
Hence we do not need to take a specific energy, and for
a fixed temperature T , we expect to find the binding en-
ergy |ω| increasing with a−1, just as in the absence of the
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Fig. 2. Trajectory of the BCS pole in the upper complex ω
plane for T = 0 (full curve) and for t̄ = 0.2, 0.5, 1.0, 2.0 (suc-
cessive dashed curves). The arrows indicate how the pole(s)
moves when a−1 is increasing.

Fermi sea. Actually this is the case that we have explored
recently [6] for µ < 0, which means T > T0, and we have
found that the molecular state with zero binding energy
does not form for a−1 = 0 as in vacuum, but rather for
a positive value of a−1

m (T ) which increases when T de-
creases. Naturally when for fixed T we increase a−1 be-
yond a−1

m (T ), the molecular binding energy increases from
zero. We have plotted 1/kF am(T ) in Figure 1 and we see
that it meets the above curve for the BCS transition at
the end point. This is natural since this point corresponds
to cancel the r.h.s. of equation (1) for ω = 0 and µ = 0,
so it belongs to the two curves. Hence there is a clear link
between the molecular shift and the existence of the BCS
phase.

It is now interesting to study in the same way what
happens when we increase a−1 at fixed T for µ > 0, that
is T < T0. More specifically we will follow the pole of Γ (ω)
which gives rise to instability. When, for fixed T , we start
from a−1 large and negative there is no instability, until by
increasing a−1 (algebraically) we reach the BCS instability
when we touch the Tc(a−1) curve. As it is well-known
this means that the corresponding pole, which was in the
lower ω complex plane has moved up and has reached the
real ω-axis. Quite generally, since a−1 is real, we find the
trajectory of the pole by writing that the imaginary part
in equation (1) is zero, that is ImI(ω̄) = 0. The resulting
trajectory in the ω complex plane is shown in Figure 2 for
various temperatures.

We see naturally that, after crossing the real axis, the
pole goes deep into the upper complex plane, correspond-
ing to the fact that, when we enter more into the BCS
phase domain, the normal state becomes more and more
unstable. However when a−1 is further increased, the pole
goes back toward the real ω-axis, eventually reaching it
on the semi-axis ω < 0. This happens for a positive value
a−1

m1(T ) shown in Figure 1. At this stage the normal state
has no longer, strictly speaking, a BCS type instability. It

is rather a molecular type instability, characterized by a
pole on the negative energy axis. However what happens
next is rather surprising. When a−1 is increased beyond
a−1

m1(T ), the pole splits into two poles, one with increasing
ω, the other one with decreasing ω. This is most easily
seen at T = 0, where one finds from equation (1) for the
position of the pole |ω̄| = 2r2:

− 1
λ
≡ π

2kF
a−1 = 2r arctan r − π

2
r + 2. (3)

Starting from 2 at r = 0, the r.h.s. of equation (3)
decreases, reaches a minimum −1/λmin = 1.67 for
ω̄ = −0.39 (r = 0.44), then increases and behaves asymp-
totically as (π/2)r. The minimum gives the value of
a−1

m1(T = 0) for which the BCS pole reaches the nega-
tive ω-axis at ω̄ = −0.39. When a−1 is increased beyond
a−1

m1(0), one finds two solutions for ω̄ around the minimum.
One of them decreases, in agreement with the expected in-
crease of a molecular binding energy. But surprisingly the
other one increases and goes rapidly to ω = 0, where it dis-
appears (more precisely it goes in the lower complex plane
along the negative ω-axis, where it has no direct physical
manifestation). This disappearance occurs for −1/λ = 2.
We call a−1

m2(T = 0) = 4kF /π the corresponding value
of a−1. The lower pole is then at ω̄ = −2. Beyond a−1

m2(0)
there is only one solution, corresponding to the continu-
ation of the lower energy solution. Hence we recover the
standard molecular situation of a single pole with a bind-
ing energy increasing with a−1.

In order to understand physically this strange situation
it is worthwhile to note that, in the absence of a Fermi
sea, the r.h.s. of equation (3) would merely be (π/2)r,
leading to the usual result |ω| = 1/ma2 for the molecu-
lar binding energy. Hence the Fermi sea contribution is
2r arctan r − πr + 2 = 2

∫ 1

0
dxx2/(x2 + r2). Therefore the

non analytic decrease, near ω̄ = 0, of the r.h.s. of equa-
tion (3), responsible for the existence of the two poles,
is produced by the Fermi sea. This is specifically due to
the −πr term. Now this term is easily linked to the den-
sity of states for positive energy, proportional to ω1/2. In-
deed if we evaluate the above integral for small and posi-
tive ω (with infinitesimal positive imaginary part), we find
2R ln[(1 − R)/(1 + R)] + iπR + 2 with R = (ω̄/2)1/2, and
the r.h.s. of equation (3) is obtained from the analytical
continuation of this last result through the upper complex
plane toward the negative ω-axis. Actually all the infor-
mation about this Fermi sea contribution is contained in
the imaginary part iπR since the real part can be recov-
ered through Kramers-Kronig relations. Now, for small ω,
this imaginary part is positive in contrast with the free
particle result ImI(ω̄) = −i(π/2)R. The overall result [10]
is ImI(ω̄) = i(π/2)R.

Clearly the physical interpretation of this change of
sign is that, below the Fermi energy, we deal with hole-
like excitations while above the Fermi energy we have the
standard particle-like excitations: in order to create ex-
cited states below the Fermi energy we have to remove
particles since Pauli exclusion forbids to add them. This
leads to the conclusion that the bound state with very
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small binding energy we have found above, just detached
from the Fermi sea, has a hole-like character. In other
words it corresponds to a molecular state formed by two
atomic holes (absence of atoms) rather than to a stan-
dard molecule formed by two atoms. It is a kind of anti-
molecule. We can come to this conclusion more rapidly by
thinking of the situation we would have for a Fermi en-
ergy going to infinity. All the low energy states we could
consider other than the ground state would be hole-like,
since the only thing which could be done would be to re-
move particles. In particular we would have only hole-like
molecules. Naturally we interpret the lower energy pole as
a standard particle-like molecular state, since in particular
it will be the only one present for a−1 > a−1

m2(0). On the
other hand, if we think of decreasing a−1 below a−1

m2(0), we
will have two poles, one being particle-like and the other
one hole-like. Therefore when they merge at a−1

m1(0) the
corresponding pole has necessarily a mixed particle-hole
nature. But this is rather natural since this pole is a BCS-
type pole as we have seen. Indeed it is well-known that
the BCS instability has this mixed nature (we can think
of it as the formation of pairs of particles, or as well as
pairs of holes), as it is reflected in the nature of the low
energy single particle excitations in BCS theory. Hence it
is rather natural that when the BCS pole, after moving
in the upper complex plane, reaches the negative ω-axis,
it has still this mixed nature. This makes also likely that,
when the two poles separate, they have actually also a
mixed nature, with a full particle or hole character only
reached at a−1

m2.

The experimental observability of such a hole-like
molecule is unclear. Indeed a hole around zero energy is
quite deep below the Fermi energy and corresponds to a
high energy excited state. It is likely that the lifetime of
such a state will be quite short due to particle-hole recom-
bination processes. These would appear because of the
strong interactions of the atoms in Fermi sea, but they
are not present in our approximate treatment since we
evaluate I(ω̄) without taking into account these interac-
tions. We would have to go beyond this theoretical level to
make them appear. Similarly it is likely that the molec-
ular states with partial hole-like nature will have a too
short lifetime to be directly observed. Hence the physical
situation for a−1

m1 < a−1 < a−1
m2 is quite unclear and it

is not obvious how this domain will survive in improved
theories. In particular the existence of two poles may sug-
gest a more complex instability, or a forbidden domain
with phase separation. On the other hand for a−1 > a−1

m2
we are back to a simple physical situation. We have just
a single pole corresponding to the formation of standard
molecular state. However the remarkable point is that the
binding energy |ω̄| is always larger than 2 (i.e. |ω| > 2EF ).
This means that it is impossible to observe a molecular
state with zero binding energy, in contrast to the classical
case of a dilute gas for which the binding energy is zero
at the Feshbach resonance a−1 = 0. Even if we believe it
is possible to observe short lived molecules in the range
a−1

m1 < a−1 < a−1
m2, this result remains valid as we have

seen above. The lower bound for the molecular binding

energy will just be smaller. Finally we have for simplicity
limited our explicit quantitative study to the T = 0 case,
but from Figure 2 the same results will be qualitatively
valid for all the range 0 ≤ T ≤ T0. The lower bound for
the molecular binding energy will decrease with increasing
T and go to zero for T = T0. Since T0 is also the maximum
temperature for the existence of the BCS phase, we reach
the surprising conclusion that, whenever the BCS phase
is present, we can not observe a molecule with zero bind-
ing energy. This offers an indirect way to demonstrate the
presence of the BCS phase.

We have naturally to be quite specific with respect to
the above statement. In this paper we have only studied
the instabilities arising in a normal Fermi gas, with in par-
ticular no molecules already present. Therefore when we
consider this gas for a−1 > a−1

m2(T ), we deal with an out of
equilibrium situation since at equilibrium a sizeable frac-
tion of the gas should be under molecular form. Therefore
we have in mind an experiment where, starting from the
a−1 < 0 side of the Feshbach resonance, one would very
rapidly change a−1 by acting on the magnetic field and
then observe the binding energy of the first few molecules
appearing in the gas. We could also worry about the effect
of the Bose-Einstein condensation of molecules. However
in our simple picture the critical temperature for this BEC
is [11] TBEC = 0.218TF , so the effect we have considered
could be at least observed in the range TBEC < T < T0.
Also the instabilities we have considered are all at zero
wavevector, just as the dominant BCS instability itself. So
the molecules we considered have zero total momentum.
For nonzero momentum the effects will be weaker, and we
expect them to disappear at some wavevector, whose in-
verse is of order of the Cooper pair size, just as the BCS
instability itself.

Finally we have naturally to consider that our the-
oretical approach is clearly not quantitatively accurate,
since for example our value for the BCS critical tempera-
ture Tc is just the standard one [14], and does not contain
lower order fluctuation effects [15] nor higher orders and
self-energy effects [16] including lifetime effects (in par-
ticular these effects will reduce [15,16] markedly Tc and
the temperature of the end point (T0, a0), and thereby
strongly increase the excitation lifetime in the vicinity of
this point). However we believe that our results remain
qualitatively valid under much more general conditions.
Indeed we see from Figure 1 that the nonzero threshold
for molecular binding energy that we have found is ulti-
mately linked to the trajectory of the BCS pole in the
upper complex plane. But the existence of this pole, and
its trajectory in the upper complex plane are quite general
features of any theoretical description. Since we naturally
expect to find molecules for very large a−1, this pole has
to go back to the real negative ω-axis, as we have found,
which implies again the nonzero molecular binding energy
whenever the BCS phase is present. In other words the
(qualitative) topology of our results should remain valid
even if they are quantitatively modified.

We stress again that we have here only looked at the
instability properties of the normal state, even in regions
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where it is not the equilibrium state. We have found that,
when a−1 goes from −∞ to +∞ across the phase dia-
gram, these properties do not change smoothly, but rather
that the behaviour changes on some lines that we have
identified. One may wonder if the same is not true for
the equilibrium phase, and in particular for the ground
state in the superfluid domain for which a quite natural
interpolating hypothesis [13,17] is a BCS-like ground state
whatever the scattering length, since this wavefunction is
known to describe properly the dilute molecular ground
state [18] as well as the weak coupling BCS state. In this
case one would rather expect a single instability to appear
corresponding to the pair formation, so it might be that
this BEC-BCS crossover is not as smooth as suggested by
this picture, and that the actual physics is more complex.
However our results have no direct bearing on this ques-
tion, since we have explored only the normal phase, not
the superfluid. We just note that, in the superfluid state,
the effect of Pauli exclusion will still be present.

We are very grateful to T. Bourdel, Y. Castin, C. Cohen-
Tannoudji, J. Dalibard, X. Leyronas, C. Mora and C. Salomon
for very stimulating discussions.
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